Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Introduction</td>
</tr>
<tr>
<td>1.1</td>
<td>Purpose</td>
</tr>
<tr>
<td>1.2</td>
<td>Hazard Communication Standard Overview</td>
</tr>
<tr>
<td>2.0</td>
<td>Hazard Communication Program Responsibilities</td>
</tr>
<tr>
<td>2.1</td>
<td>Director, Environment, Health & Safety (EHS Department</td>
</tr>
<tr>
<td>2.2</td>
<td>Hazard Communication Coordinator</td>
</tr>
<tr>
<td>2.3</td>
<td>Environment, Health & Safety Staff</td>
</tr>
<tr>
<td>2.4</td>
<td>Supervisors & Managers</td>
</tr>
<tr>
<td>2.5</td>
<td>Employees</td>
</tr>
<tr>
<td>2.6</td>
<td>UW Madison Chemical Safety Committee</td>
</tr>
<tr>
<td>3.0</td>
<td>Hazardous Chemical Inventory</td>
</tr>
<tr>
<td>3.1</td>
<td>Defining Hazardous Chemicals</td>
</tr>
<tr>
<td>3.2</td>
<td>UW Madison Chemical Inventory Form</td>
</tr>
<tr>
<td>4.0</td>
<td>Labeling and Other Forms of Warning</td>
</tr>
<tr>
<td>4.1</td>
<td>Labeling Requirements</td>
</tr>
<tr>
<td>4.2</td>
<td>Labeling Systems</td>
</tr>
<tr>
<td>5.0</td>
<td>Safety Data Sheets (SDS)</td>
</tr>
<tr>
<td>5.1</td>
<td>SDS Requirements and Format</td>
</tr>
<tr>
<td>5.2</td>
<td>Specific SDS Sections (16)</td>
</tr>
<tr>
<td>6.0</td>
<td>Written Hazard Communication Plan</td>
</tr>
<tr>
<td>7.0</td>
<td>Training Requirements</td>
</tr>
<tr>
<td>7.1</td>
<td>Information and training</td>
</tr>
<tr>
<td>7.2</td>
<td>Non-routine tasks</td>
</tr>
<tr>
<td>8.0</td>
<td>References</td>
</tr>
<tr>
<td></td>
<td>Hazard Communication Standard Policy for Non-Lab Workers</td>
</tr>
<tr>
<td></td>
<td>UW Madison Chemical Inventory Form</td>
</tr>
</tbody>
</table>
1.0 Introduction

Potentially hazardous chemicals can be found everywhere including work, home and even during recreational activities. It is estimated that there are more than 900,000 existing chemical products and hundreds that are introduced annually. Almost 100 million workers are potentially exposed to one or more chemical hazards in the workplace. For this reason in 1983, the Occupational Safety and Health Administration (OSHA) promulgated the Hazard Communication Standard (HCS), commonly called HazCom or Right to Know.

The Hazard Communication Standard covers all forms of chemicals in the workplace including liquids, solids, gases, vapors, fumes and mists. HCS requires manufacturers and or importers of chemicals to classify the chemicals they produce and determine if they pose a physical (such as flammable, explosive, etc.) or health hazard (such as toxic, poison, etc.). If they are identified as such, then the manufacturer and or importers is required to create a chemical label which provides brief statements of the hazards associated with the chemical and a Safety Data Sheet (SDS) which is a document the provides more comprehensive technical information on the hazardous chemical and serves as a reference for employees, employers, emergency personnel and health professionals.

All University of Wisconsin-Madison departments, facilities and affiliates that work with or use hazardous chemicals in a non-laboratory environment (such as art studios, printing operations, custodial operations, animal care staff, agricultural stations, etc.) are subject to the requirements outlined in this manual.

The Hazard Communication Standard does not cover laboratories and clinical workplaces however. Employees who work in laboratories are covered under OSHA’s Occupational Exposure to Hazardous Chemicals in Laboratories (29 CFR 1910.1450) – also referred to as the OSHA Laboratory Standard. See the UW Madison Campus Chemical Hygiene Plan and Compliance Guide for more information on UW Environment, Health and Safety website.

Regarding regulatory enforcement, the Wisconsin Department of Safety and Professional Services (formerly Wisconsin Department of Commerce) which adopts and enforces safety and health standards for public sector in the State of Wisconsin (WI statue 101.055) adopted the Hazard Communication Standard for Wisconsin workplaces. It is located in Wisconsin Administrative Code Chapter SPS 332.

There are five basic elements of the Hazard Communication Program. These include: chemical inventory, chemical labeling, Safety Data Sheets, written plan and employee training. This manual will address all of these basic elements.
1.1 Purpose

This manual establishes administrative requirements, procedures and forms for the University of Wisconsin-Madison Hazard Communication Program. It is intended to ensure compliance with Federal and State regulatory requirements. Applicable regulations are the Occupational Safety and Health Administration (OSHA) Hazard Communication Standard which include revisions such as the United Nations Globally Harmonized System for the Classification and Labeling of Chemicals (GHS) and Wisconsin Administrative Code, Chapter SPS 332 for Public Employees Safety & Health.

1.2 Hazard Communication Standard Overview

The Hazard Communication Standard regulation imposes numerous requirements on both manufacturers or importers of the hazardous chemical and the employers who require their employees to use the chemicals. Specifically, the standard requires that:

- Manufacturers and importers of hazardous chemicals review available scientific evidence concerning the physical and health hazards of the chemicals they produce and import;
- Manufacturers and importers develop a Safety Data Sheet (SDS) and chemical label for every chemical that is a physical and/or health hazard.
- The information on the physical and/or health hazards of the chemicals are sent downstream to all chemical users in the form of Safety Data Sheets (SDS) and chemical labels.
- Employers provide information and training on the chemical hazards to any employee who has the potential of being exposed to a hazardous chemical.
- Employers complete a chemical inventory, review chemical labels on incoming shipments, assure secondary containers are labeled (transferred chemicals) and locate Safety Data Sheets for each chemical from the manufacturer.
- Employers completed a Written Hazard Communication Program Plan and make it available to employees upon request.
- Employees understand the hazardous chemicals they are working with and how to protect themselves by reviewing the chemical labels and Safety Data Sheets.

2.0 Hazard Communication Program Responsibilities

In order to create and maintain an effective Hazard Communication program it is important for all parties to clearly understand the responsibilities inherent in their roles. Below are the minimum requirements necessary to remain compliant with regulations.

2.1 Director of Environment, Health & Safety

The Director of Environment, Health & Safety (EH&S) will provide the necessary staffing and resources to maintain an effective Hazard Communication Program for each non laboratory work environment.
2.2 Hazard Communication Coordinator

The campus Hazard Communication Coordinator will:

- Develop and maintain the *Hazard Communication Standard Policy for Non-Laboratory Workers*;
- Review and evaluate the effectiveness of the *Hazard Communication Policy for Non-Laboratory Workers* at least annually and update as necessary;
- Post updates to the *Hazard Communication Policy for Non-Laboratory Workers* on the EH&S website;
- Provide support and assistance for managers/supervisors in implementing the Hazard Communication Program elements;
- Develop and present Hazard Communication Training;
- Upon request, locate SDS for campus departments;
- Review department, facility and affiliate written Hazard Communication Programs for completeness and effectiveness;
- Act as technical expert in Hazard Communication;
- Conduct periodic audits to determine compliance status. Identify discrepancies and assist in resolving the discrepancies;
- Remain current on Hazard Communication regulatory issues and communicate any changes to campus organizations;
- Maintain a website containing easily accessible information, guidance and forms.

2.3 Environment, Health & Safety Staff

The Environment, Health and Safety Department have staff with expertise covering all areas of safety and compliance. EH&S personnel will:

- Develop, implement, and manage a comprehensive environment, health and safety program for the UW Madison departments, facilities and affiliates including Hazard Communication;
- Develop and implement campus environment, health and safety policies related to non-laboratory work environments using hazardous chemicals;
- Develop and prepare environment, health and safety training related to non-laboratory work environments using hazardous chemicals;
- Inspect work areas and identify hazards and issues of non-compliance related to non-laboratory work environments using hazardous chemicals;
- Maintain a website containing easily accessible information, guidance, forms, etc. related to non-laboratory work environments.

2.4 Supervisor/Manager

The Supervisor/Manager has the primary responsibility for providing a safe work environment and for ensuring compliance with all elements of the Hazard Communication Standard within their own assigned work area. While these responsibilities can be delegated to other individuals within the work area, the Supervisor/Manager must ultimately assure that the duties are performed safely. The Supervisor must:
• Complete a written Hazard Communication Program and review and update the program annually. Send a copy of the written program to the UW Madison Hazard Communication Coordinator;
• Assess chemical hazards, select and provide PPE and required safety equipment for employees;
• Ensure proper labeling of chemicals in the work area;
• Maintain and update the chemical inventory in the work area as needed or at least annually;
• Maintain a SDS file for all hazardous chemicals in the work area and make them available to employees;
• Ensure all new employees receive initial Hazard Communication training;
• Provide orientation to all new employees on specific chemical hazards in the work area;
• Train all employees on new chemical hazards introduced into the work area;
• Identify non-routine tasks and ensure employees receive training in performing tasks safely;
• Ensure that workers understand and follow the chemical safety policies, practices, and regulations related to their operation;
• Ensure that staff are knowledgeable on emergency plans, including fires, equipment failure, and chemical spills;
• Provide regular Hazard Communication inspections and housekeeping inspections, including inspection of emergency equipment;
• Correct any unsafe conditions identified within the work area through either self-audits or inspections by EH&S or other safety professionals;
• Maintain documentation on training, exposure monitoring, approvals, and other safety related issues;
• Maintain compliance with federal, state, and local regulations related to the use of hazardous chemicals;
• Ensure proper disposal of hazardous materials.

2.5 Employees

Each employee is responsible for the safe use, storage and handling of hazardous chemicals in the workplace. The employees working under the supervision of the area Supervisor must:
• Follow campus safety practices, and policies which includes the Hazard Communication Standard Policy for Non-Laboratory Workers;
• Learn and understand in advance about the physical and health hazards of the chemicals you work with. If in doubt, ask your Supervisor;
• Report incidents involving chemical spills, exposures, work-related injuries and illnesses, or unsafe conditions to immediate supervisor;
• Attend all safety training as required by the Supervisor;
• Review labels and the Material Safety Data Sheet before using any hazardous material;
• Ensure proper labeling of chemicals in your workplace;
• Use the personal protective equipment (PPE) and hazard control devices provided;
• Keep all PPE in good operating condition;
• Report incidents involving chemical spills, exposures, work-related injuries and illnesses, or unsafe conditions to your Supervisor immediately;
• Report any program deficiencies to your Supervisor;
• Dispose of hazardous waste according to University procedures;
• Do not perform any procedure with a hazardous chemical unless you are confident of its safety. If you are concerned about exposure, stop and ask for help.

2.6 UW Chemical Safety Committee

The UW-Madison Chemical Safety Committee is comprised of university faculty and staff drawn from many organizations and departments. The Chemical Safety Committee will:
• Develop, review, and approve campus policies on issues related to the purchase, use, storage, and disposal of chemicals.
• Review compliance with campus policies and recommend methods to promote compliance.
• Periodically review chemical safety issues in EH&S publications and on its website, including reviews of the Hazard Communication Standard Policy for Non-Laboratory Workers.
• Collaborate with other institutional committees to assure that chemical safety concerns are properly addressed.
• Evaluate the broad needs for an effective campus-wide chemical safety program.
• Provide a forum for the campus community to raise concerns regarding the safe use, handling, and disposal of chemicals and assist in the resolution of disputes regarding chemical safety issues.

3.0 Hazardous Chemical Inventory

Each campus department working with or using hazardous chemicals are required to complete and maintain a chemical inventory. At a minimum, the inventory should include the chemical name as it appears on the shipping label and SDS, the manufacturer’s name and address and the location of the chemical (building and room). The inventory must be updated at least annually or as needed and kept for 30 years. A chemical inventory can help in the management of chemicals used in the workplace. This will help in reducing losses due to shelf life expiration and over buying chemicals. The inventory should be kept with the written Hazard Communication Plan.

3.1 Defining Hazardous Chemicals

It is the responsibility of manufacturers and/or importers to assess and classify the chemicals they produce to determine if the chemicals are hazardous. Appendix A (health hazards) and Appendix B (physical hazards) are located in the regulation and provide guidance for the manufacturer and importer in the classification and categorization process. The manufacturer and/or importer then uses this information to create a chemical label and Safety Data Sheet (SDS). Here are the two categories used for defining a hazardous chemical:
Physical Hazard is an explosive, flammable, oxidizer, self-reactive, pyrophoric, self-heating, organic peroxide, corrosive to metal, gas under pressure or when in contact with water, emits a flammable gas.

Health Hazard is a chemical with the following hazardous effects: acutely toxic, skin corrosion or irritation, serious eye damage or eye irritation, respiratory or skin sensitization, germ cell mutagenicity, carcinogenicity, reproductive toxin, specific target organ or aspiration hazard.

3.2 UW Madison Chemical Inventory Form

The suggested chemical inventory form is located on the UW Madison Chemical Safety for Hazard Communication website at: www.ehs.wisc.edu/hazardcommunication.htm. When completing the inventory, include chemicals in storage and in use.

4.0 Chemical Labeling

Always read the chemical label before the container is opened, move or handled. Labels provide immediate hazard warnings to which employees may be exposed. Through this chemical identification provides a direct link to the SDS. An unlabeled container is to be reported to the supervisor of the work area immediately. Do not handle a container whose contents are unknown.

All hazardous chemicals used and stored on the campus must be properly labeled. Every effort should be made not to deface or remove the shipping label from the container. Each supervisor is obligated to ensure that all chemical containers have either the original shipping label from the manufacturer or a secondary or workplace label. Labels must prominently displayed, legible and in English. Other languages may be added.

4.1 Labeling Requirements

With the recent changes in the Hazard Communication Standard to include the Globally Harmonized System (GHS), the shipping label will now have a new look with SIX parts (see sample below). These changes will require chemical manufacturers and importers to label their shipping containers with a harmonized signal word, pictogram, hazard statement for each hazard class and category and precautionary statements as well as chemical name and manufacturer name and address. The chemical manufacturer is provided this specific information in Appendix C of the regulation to aid in the design and content of the new shipping label. Shipping labels must be in English, prominently displayed and legible.

For containers that hold transferred chemicals, a chemical label is also needed. This is called a workplace label and is prescribed to include the product name, words, pictures, symbols or a combination that provide general information regarding the physical and health hazards of the chemical. Workplace labels need to be in English, prominently displayed and legible.
Portable chemical containers into which chemicals are transferred from a shipped container need not be labeled if it is intended for immediate use by the employee who performs the chemical transfer during their work shift. If residual chemicals remain in the container after the employees work shift, then the chemical container needs to be labeled.

Chemical manufacturers, who become aware of any significant new information regarding the hazards of the chemical, must revise the label within six months.

4.2 Labeling Systems

Shipping labels are found on the chemical containers that the manufacturer sends to the buyer. The GHS changes to the Hazard Communication Standard have very specific requirements for these shipping labels (see section 6.1 above). Here is an example and explanation of a shipped container label:

New GHS Shipping Label

Signal words are used to indicate the relative level of severity of the hazard and alert the reader to a potential hazard. The signal words are “danger” for more severe hazards and “warning” for less severe hazards.

A **hazard statement** is assigned to a hazard class and category (which is found in Appendix C of the regulation) which describes the nature of the hazard(s) of the chemical. Examples are: toxic if swallowed explosive or causes skin irritation.

The **pictogram** is a symbol plus graphic elements. They convey health, physical and environmental hazard information assigned to a GHS hazard class and category. Each pictogram consists of a different symbol on a white background within a red square frame set on a point or a red diamond. There are nine pictograms as identified in the chart below.
A precautionary statement is a phrase that describes recommended measures to minimize or prevent adverse effects resulting from exposure to or improper storage or handling. Examples are: wear protective gloves and clothing, keep away from heat/sparks/flame/hot surfaces, no smoking.

Workplace Labels-Other Types of Chemical Labels

For a workplace label, there are several standardized labeling systems which can be used and workers may see in the work place. The most common types of labeling systems encountered are the Department of Transportation (DOT), National Fire Protection Association (NFPA) and the Hazardous Materials Information System (HMIS). The DOT shipping label is generally placed on the outside of the box for easy recognition during shipping. Regardless of the labeling system used, it is mandatory that employees receive training on the labeling system and the meanings of colors and symbols used.

The NFPA and HMIS systems are used on secondary or workplace containers. This is when the chemical is transferred to a different container or secondary container directly from the shipping container. It is prescribed to be labeled either with the actual shipping label or with the identity or name of chemical and a label with words, pictures, or symbols that provide information on the chemical hazards.

Remember: Whoever transfers a chemical from the shipped container to a workplace container is obligated to label the chemical container.
Department of Transportation (DOT) Labels

When chemicals are shipped or transported in the public sector, there must be labels to satisfy DOT rules. These labels are designed to identify DOT classes of hazardous materials. The DOT labels are diamond-shaped and color-coded by hazard. The hazard class or division number appears in the lower corner. If you are involved in the shipment or receipt of hazardous materials, you must be trained to assess the hazard and be capable of responding in an emergency.

NFPA Labels

The popular NFPA diamond was developed by the National Fire Protection Association to aid emergency responders in recognizing potentially hazardous situations. The label contains 4 colored diamond shapes within a diamond. Each colored diamond is associated with a different type hazard such as health, flammability, reactivity and special hazards. The numerical rating system within each diamond is from 0 to 4 with four being the most hazardous.
HMIS Labels

Hazardous Materials Identification System (HMIS) is another popular system developed by the National Paint and Coatings Association. It contains 4 different colored rectangular shapes that are related to different hazards like the NFPA system. The numerical rating system is also from 0 to 4 with four being the most hazardous.

The Personal Protective Equipment (PPE) section of the label requires the use of a chart or table to determine which alpha character is needed to add to the label. The chart below is an example. Employees must be trained on the meaning of the numerical and alpha characters. Frequently, the HMIS PPE chart is posted in the workplace for quick and easy recognition by employees.
5.0 Safety Data Sheets (SDS)

5.1 SDS Requirement and Format

A Safety Data Sheet or SDS is a document that contains technical information on the potential hazards (fire, health, reactivity, environmental, etc.) of a chemical and how to safely work, handle and store the chemical. Each UW work unit is required to obtain a SDS from the manufacturer for each chemical and maintain them in such a way that they are readily available to employees in any work area and during any shift. Electronic access and other alternatives to maintaining paper copies are permitted as long as no barriers to immediate employee access are created.

There are 16 sections to a SDS. The SDS is produced by the chemical manufacturer or importer and shipped to the buyer on the initial shipment or when changes have been made. If changes are made to the SDS, the manufacturer has 3 months to update the document. Here is a list of the 16 sections:

5.2 Specific SDS Sections (16)

Section 1 - Product and Supplier Identification

The SDS begins with the chemical name, manufacturer name, address and phone, recommended use, restrictions and emergency phone numbers.

Section 2 - Hazard Identification

This section furnishes information on the hazards of the chemical and appropriate warning information. This includes:
- Signal word-such as Danger or Warning. Selection is based on the severity of the chemical.
- Hazard statements-Which detail the nature of the chemical hazards such as toxic or flammable.
- Pictograms-Of which there are nine. The manufacturer would select the pictogram based on the hazards of the chemical.
- Precautionary statements-Which are measures to minimize adverse effects of exposure. Information includes PPE, storage and handling.
- Mixture information and finally,
- Description of any hazard not otherwise classified

Section 3 - Composition and ingredients

This section specifies the chemical name, common name or synonym, percent of ingredients for mixtures, CAS number or Chemical Abstract Service number and any impurities or stabilizers.

Section 4 - First Aid Measures

Details the initial care that should be given by responders to an individual who has been exposed to the chemical. It presents first aid instructions by routes of entry, symptoms of exposure or recommendations for immediate medical care and treatment.
Section 5 - Firefighting Measures

Furnishes recommendations for fighting a fire caused by the chemical. The recommendations include suitable and unsuitable extinguishing methods and equipment, advice on specific hazards that develop from the chemical during the fire and recommendations on special protective equipment and precautions for firefighters.

Section 6 - Accidental Release

Details recommendations on an appropriate response to spills, leaks and releases, emergency procedures for evacuation, appropriate materials for containment and clean up procedures.

Section 7 - Handling and Storage

Covers conditions for safe storage, recommendations for handling incompatible chemicals, minimizing release of the chemical and general hygiene practices.

Section 8 - Exposure Control and Personal Protective Equipment (PPE)

In this section you will find OSHA’s Permissible Exposure Limits or PELs, the Threshold Limit Values of ACGIH, engineering controls such as ventilation and recommendations on PPE.
Section 9 - Physical and Chemical Properties

Section which characterizes the chemical and details appearance, odor, pH, flammability limits, flash point and vapor pressure to name a few.

Section 10 - Stability and Reactivity

Presents information on the reactivity potential of the chemical, possibility of hazardous reactions, conditions to avoid, materials that may be incompatible to the chemical and hazardous decomposition products.

Section 11 – Toxicology

Furnishes numerical measures for toxicity of the chemical as in Lethal Dose and Lethal Concentration. Routes of entry, acute and chronic exposure effects and whether the chemical is a carcinogen.
Section 12 – Ecological Information

It’s important to note that the next three sections of the SDS which include Ecological Information, Disposal Considerations and Transportation Information are part of the GHS updates however OSHA has no jurisdiction over the environment or transportation regulations. The Ecological section presents information on how to evaluate the environmental impact of the chemical if released to the environment. It also specifies the potential of the chemical to move from soil to ground water, the potential to persist and degrade and the bioaccumulation potential.

Section 13- Disposal Considerations

Offers guidance on the appropriate disposal methods, special precautions for landfill and incineration and language discouraging sewerage disposal.

Section 14 –Transportation Information

Furnishes guidance on classification information on shipping and transporting the chemical by road, air, rail or sea. Specifies UN number, transportation restrictions and special transport considerations.

Section 15 - Regulatory Information

Defines regulations specific to the chemical that are not indicated anywhere else on the SDS. This would include OSHA, DOT, EPA, foreign and regional regulations and information.
Section 16 - Other Information

Which presents the date of preparation and date of any revisions. Other information may be included by the manufacturer.

6.0 Written Hazard Communication Plans

Each campus department working with chemicals need to develop a written Hazard Communication Plan. The written plan details how the department will comply with the provisions of the regulation. This plan includes an inventory of the hazardous chemicals used and stored in the workplace, handling of SDS including how they are maintained, obtained and accessed, labeling and training requirements, how contractors will be handled and provisions for non-routine tasks. Throughout the written plan, specific responsibilities are assigned by job title. The plan should be kept with the SDS and made available upon request.

UW Madison uses a written plan template for campus department. This template is located on the UW Environment, Health and Safety website: www.ehs.wisc.edu/hazardcommunication.htm

7.0 Training Requirements

Employee training is a critical part of the UW Hazard Communication Program. Employees must understand the potential chemical hazards in their work area and have the knowledge of how to reduce or eliminate those hazards. Training needs to be provided prior to starting work with hazardous chemicals again when a new hazard is introduced. It is the responsibility of the immediate supervisor to ensure that employees receive and attend this training.

The compulsory initial training shall provide the following information:

1. UW Madison Policies and procedures related to the Hazard Communication Standard,
2. The location of the written plan,
3. How to read and understand a Safety Data Sheet.
4. Physical and health hazards of the hazardous chemicals in their work area.
5. Methods and observation techniques to determine the presence or release of hazardous chemicals.
6. Work practices that may result in exposure.
7. How to prevent or reduce exposure to hazardous chemicals in the workplace.
8. Personal Protective Equipment (PPE) to be used.
10. Emergency response procedures for chemical spills.

There are several options to accomplish this initial training: through Learn@UW (class title: Hazard Communication with GHS Update), through Office of Human Resource Development or OHRD (monthly classes) or on-site training sessions through the UW Hazard Communication Coordinator. Check the Environment, Health and Safety website for training information: www.ehs.wisc.edu/hazardcommunication.htm

Non Routine Tasks

Employees may periodically perform non-routine tasks which may expose them to hazardous chemicals. Non-routine tasks may include unplanned cleaning projects or unplanned maintenance work. Prior to starting work, employees need to be trained and informed of the chemical hazards they may encounter completing non-routine tasks as well as hazards associated with chemicals contained in unlabeled pipes. Training should emphasize the potential hazards of working with unfamiliar substances or in unfamiliar conditions, what PPE is required, first aid and emergency procedures, any physical and health hazards, etc. The area supervisor is obligated to ensure that the affected employees are trained prior to performing the non-routine tasks.

8.0 References

UW Madison Chemical Inventory Form

www.ehs.wisc.edu/hazardcommunication.htm

UW Hazard Communication Policy

www.ehs.wisc.edu/hazardcommunication.htm